Auditory cortical plasticity in learning to discriminate modulation rate.
نویسندگان
چکیده
The discrimination of temporal information in acoustic inputs is a crucial aspect of auditory perception, yet very few studies have focused on auditory perceptual learning of timing properties and associated plasticity in adult auditory cortex. Here, we trained participants on a temporal discrimination task. The main task used a base stimulus (four tones separated by intervals of 200 ms) that had to be distinguished from a target stimulus (four tones with intervals down to approximately 180 ms). We show that participants' auditory temporal sensitivity improves with a short amount of training (3 d, 1 h/d). Learning to discriminate temporal modulation rates was accompanied by a systematic amplitude increase of the early auditory evoked responses to trained stimuli, as measured by magnetoencephalography. Additionally, learning and auditory cortex plasticity partially generalized to interval discrimination but not to frequency discrimination. Auditory cortex plasticity associated with short-term perceptual learning was manifested as an enhancement of auditory cortical responses to trained acoustic features only in the trained task. Plasticity was also manifested as induced non-phase-locked high gamma-band power increases in inferior frontal cortex during performance in the trained task. Functional plasticity in auditory cortex is here interpreted as the product of bottom-up and top-down modulations.
منابع مشابه
Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning
Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroence...
متن کاملPeriodicity Coding in the Auditory Cortex: What Can We Learn from Learning Experiments? Holger Schulze and Henning Scheich
Many natural sounds are characterized by periodic envelope or amplitude modulation (AM). The perceptual qualities corresponding to this signal characteristic are rhythm for low and pitch for high modulation frequencies (fm). We demonstrate that fm ranges corresponding to these two perceptual qualities seem to be represented by different codes in the primary auditory cortex (AI) of the Mongolian...
متن کاملModulation of frequency receptive field plasticity in rat auditory cortical neurons by electrical stimulation of medial prefrontal cortex.
Using conventional electrophysiological technique, we investigated the effects of stimulating the medial prefrontal cortex (mPFC) on plasticity of frequency receptive field (RF) in auditory cortical (AC) neurons in rats. When the mPFC was electrically stimulated, the RF plasticity of 51 (27.2%) neurons was not affected and that of 137 neurons (72.8%) was either inhibited (71 neurons, 37.7%) or ...
متن کاملTop-down modulation of sensory cortex gates perceptual learning.
Practice sharpens our perceptual judgments, a process known as perceptual learning. Although several brain regions and neural mechanisms have been proposed to support perceptual learning, formal tests of causality are lacking. Furthermore, the temporal relationship between neural and behavioral plasticity remains uncertain. To address these issues, we recorded the activity of auditory cortical ...
متن کاملنقش احتمالی ساخت پذیری سیناپسی هسته پشتی حلزونی در ایجاد وزوزهای سابجکتیو
Abstaract Background and Aim: Tinnitus is a specific auditory sensitivity in which the patient hears nonexistent sounds. From neurological point of view, in majority of them increment in neural activity has been proposed characterized by increase in spontaneous firing rate in central auditory system. According to a hypothesis, tinnitus is a result of abnormal synaptic plasticity and reduced inh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2007